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The interaction of sound with a subsonic jet issuing 
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The transmission of sound out of a semi-infinite circular jet pipe in the presence of 
subsonic flow from the pipe is investigat,ed. An unstable cylindrical vortex layer 
attached to  the edge of the pipe is considered across which differences in mean subsonic 
flow, density and temperataure are included. A solution satisfying the Kutta condition 
and causality is found which possesses an instability wave term that dominates within 
a region of approximately 45" to the downstream jet axis. It is shown that when an 
exterior flow is imposed the noise level increases upstream whilst the instability wave 
weakens downstream. The stable part of the solution is shown to agree very well with 
some recent experimental results. 

1. Introduction 
In  this paper we shall consider a simple theoretical model for the propagation of 

sound out of a circular jet pipe in the presence of jet flow. The earliest published work 
discussing this problem was that of Carrier (1956); however we now believe that he 
proposed an incorrect boundary condition on the vortex layer which separates the 
jet flow from the surrounding gas. Subsequent work on the jet-pipe problem has mainly 
concentrated on the case when the exterior gas flows at the same speed as the jet and is 
reported by Lansing, Drischler & Pusey (1970), Candel(1973), Munt (1975) and Homicz 
& Lordi (1975). Recently Savkar (1975) has presented a solution to the problem with 
mismatch of the flow, extending Mani's (1973) work on the two-dimensional jet to the 
cylindrical case. Both Mani and Savkar, however, ignore the presence of any instability 
of the vortex layer in their model. We shall include instabilities in our mathematical 
treatment of the problem. Lee & Jones (1973) have also included instabilities but their 
solut,ion does not satisfy the boundary conditions on the exterior of the pipe. 

Instabilities have particular theoretical significance for diffraction problems 
involving a surface edge shedding an unstable shear layer. This has been clearly 
demonstrated by Morgan (1974) and Crighton & Leppington (1974) in their analysisof a 
two-dimensional problem involving the interaction of an acoustic source with a semi- 
infinite vortex sheet which is shed from a rigid splitter plate. They independently show 
that an instabilit,y in the vortex sheet is triggered by the incident acoustic disturbance 
and in the acoustic field gives rise to a large amplitude wave (the instability wave) 
effective downstream within a wedge a t  45" to the vortex sheet. The solution is unlike 
that for the infinite vortex sheet (Jones & Morgan 1972), where if one ignores the in- 
stability wave the acoustic field outside the wedge remains unaltered. For when the 
vortex sheet is coupled to a rigid splitter plate one cannot ignore instabilities without 
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disrupting the remainder of the acoustic field. This is because the stable portion of the 
field alone does not satisfy all the boundary conditions. A similar situation arises when 
Morgan's (1975) work on the stability of the cylindrical jet is extended to include a jet 
nozzle. 

Several authors have discussed the spatial instability modes of a cylindrical jet in 
the absence of acoustic sources. Batchelor & Gill (1962) determined these modes from 
n eigenequation which is a special case of the equation we discuss in $ 3 .  Some observed 

directional sound waves that radiated from a supersonic jet have been explained by 
Tam (1971) in terms of an instability in the vortex layer but he restricted himself to 
high frequencies. Similar work has been pursued by Crow & Champagne (1971) and 
Chan & Westley (1973). The former authors and Lee & Jones (1973) find additional 
solutions to their eigenequation in some special circumstances but cannot reject these 
other than by physical conjecture. We shall show that these additional solutions are 
part of a system of zeros of the eigenequation and that, when acoustic sources are 
present, this system has no influence upon the stability of the field. These results are an 
extension of some qualitative details that have been rigorously examined by Morgan 
(1975). 

Whether inztabilities are relevant or not for a real turbulent jet is, however, a subject 
of some controversy. In our thin-shear-layer model the instability wave is predicted 
downstream of the jet nozzle within a cone whose generator makes an angle of around 
40'-45" with the jet axis. Indeed a large amplification in this region was found experi- 
mentally by Crow (1972) for a high speed jet. On the other hand Savkar (1975) euggests, 
by reference to unpublished experiments, that only for jet Mach numbers in excess of 
0.7 does the instability wave appear. Pinker & Bryce (1976), however, in their careful 
experimental measurements, taken at angles down to 35", do not observe an instability 
wave for a cold jet even for a jet Mach number as high as 0.95. The controversy might be 
mathematically resolved by allowing for the thickness of the shear layer. For instance 
Jones (1977) has shown that for an infinite plane shear layer there is a critical Strouhal 
number, based on the shear-layer thickness, above which the instability wave does not 
exist. Further, when the instability does exist, the angle of influence is dependent on the 
Strouhal number and decreases to zero as the Strouhal number approaches the critical 
value. Similar results may be expected to apply in the cylindrical case; however such 
a study is beyond the scope of the present paper. 

Another topic of some uncertainty is that of the correct condition to apply at the 
trailing edge of a pipe or plane. Orszag & Crow (1970) were the first to consider the edge 
conditions for an unstable shear layer coupled to a semi-infinite flat plate. In  their 
analysis, which excluded sound sources and was for incompressible flow, they suggested 
that one of three possible conditions may apply at  the trailing edge: namely (i) the 
'full Kutta condition', (ii) a 'rectified Kutta condition' or (iii) no Kutta condi- 
tion. Their analysis was extended by Crighton ( 1 9 7 2 ~ ~ '  b )  to include compressibility. 
Neither Crighton nor Orszag & Crow prove conclusively which edge condition should 

For the problem incorporating a sound source Morgan (1974) and Crighton & 
Leppington find that there is an infinity of causal solutions, only one of which satisfies 
the ' full Kutta condition ' that the edge velocity be finite, the remainder giving infinite 
velocities at the edge. They favour the unique solution satisfying the 'full Kutta 
condition '. Indeed Bechert & Pfizenmaier (1  975) have provided experimental evidence 

apply. 
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to suggest that the ‘full Kutta condition’ is the correct condition to apply if the shear 
layer is thin, which is certainly the case in the model used by Morgan and Crighton & 
Leppington. Therefore, since we have also assumed a thin shear layer, we shall adopt 
the ‘full Kutta condition’ at  the nozzle of the jet pipe. However we should mention 
that, for a shear layer of finite thickness, Bechert & Pfizenmaier have observed a 
dependence of the exit condition on the Strouhal number based on the shear-layer 
thickness. For high Strouhal numbers they suggest t h a t  the ‘no Kutta (or parabolic) 
condition’ of Orszag & Crow is appropriate. Difficulties of uniqueness arise if we 
attempt to relax the Kutta condition so we shall not pursue such an analysis here, 
although Howe (1976) has found that a t  very low Mach numbers the effect of relaxing 
the Kutta condition is to increase the radiated sound level. 

I n  the following section the mathematical model is established with the acoustic 
disturbances having harmonic time dependence exp (iwt). For analytical convenience 
we allow for complex values of the wavenumber k = w/cj ,  where ci is the speed of 
sound in the jet. A formal solution is then obtained for k lying within a special 
region in the lower half k plane. The contour bounding this region is determined by 
certain zeros of an eigenequation whose properties we analyse in 5 3. Ultimately 
we are interested in the solution for real k and to retain regularity in the k plane it 
is necessary to eliminate a singularity which occurs in the solution on the aforemen- 
tioned contour. 

Section 4 deals with the splitting of the eigenequation. This is necessary for t,he 
application of the Wiener-Hopf procedure followed here. Other authors have used 
approximations to evaluate similar split functions. Crighton (1972 b ) ,  for instance, 
considered the limits of high and low frequency whilst Savkar (1975) used the Carrier- 
Koiter approximation. 

In 4 5 we consider the question of causality. This is usually investigated by analysing 
the initial-value problem and demanding that the acoustic field is zero before the 
source is triggered. The significance of pursuing such an analysis has been established 
by Jones & Morgan (1972). Hardisty (1975) has used similar ideas for the treatment of 
the instability of a two-dimensional jet under acoustic radiation. On the other hand 
Morgan (1975), in his analysis of the cylindrical vortex layer, answers the causality 
question by applying it theorem of Jones & Morgan (1974). The validity of this theorem 
has been demonstrated by Morgan (1974) in dealing with the semi-infinite vortex sheet 
and we shall examine caueality in the same way. 

The acoustic far field is evaluated in 5 6 and contains the instability term arising 
from causality. In  5 7 we compare the computed far field with the results of (i) Savkar’s 
(1975) theory, (ii) the experiments of Plumblee & Dean (1973) and (iii) the experiments 
of Pinker & Bryce (1976). Agreement with the latter work is particularly good for a cold 
jet operating in static and flight (simulated) conditions. 

2. Formulation of the problem 

The problem we consider is that  of acoustic diffraction by a sound wave propagating 
out of a rigid semi-infinite cylindrical shell from which also issues a cylindrical jet of 
fluid, the whole being immersed in a fluid moving axially. The cylinder is specified by 
r = a, z < 0 in cylindrical polar co-ordinates ( r ,  0 ,  z )  and the vortex layer, separating 
the two fluids in relative motion, is taken as the semi-infinite extension of the cylinder 
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into the region r = a, z > 0. Differences between the two fluids in mean values of the 
density and speed of sound are also included. Viscosity, thermal conductivity and all 
nonlinearities will be ignored. 

The cylindrical jet is taken to have density pi, speed of sound ci and velocity Mej, 
directed along the + z axis. Outside the jet the fluid is taken to have density ypj, speed 
of sound ci/C and velocity Maci, directed in the same sense as the jet and with 

O < a < I .  

Here the non-dimensional quantities a, y and C express the ratios of the mainstream 
value to the jet value for the velocity, density and the reciprocal of the speed of sound 
respectively. The sound source is assumed to have harmonic time dependence exp ( iw t ) ,  
this factor being suppressed throughout. Then the equations satisfied by the velocity 
potential $(r ,  0, z )  are 

where k = w/ci. 
From the assumption that the cylinder is perfectly rigid, reflecting all sound, one 

derives the boundary condition that the normal derivative of 4 vanishes on the 
cylinder, viz. 

The boundary conditions on the vortex layer are the continuity of pressure, ao that 

( 2 . 3 )  a$@, 0,  z)/ar = 0, z < 0. 

( ik  + Ma/&) d(a-, 0, Z) = y( ik  + M d / a z )  $(a+, 0, z), z > 0, ( 2 . 4 )  

and the kinematic condition for equal particle displacement on both sides cf the vortex 
layer. Let y(z, 0) denote the displacement of the vortex layer from its mean position 
r = a ;  then the Iatter condition implies that 7 satisfies 

At the edge of the cylinder we impose the Kutta condition that the vortex layer should 
leave the cylinder with zero gradient. We also require that the field be radiating out- 
wards at  infinity. 

R e  split the total field $ into the contributions from the primary wave ( g o )  and the 
diffracted field ( U ) ,  so that 

For the primary wave we have taken 
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which satisfies (2.1) and (2.3) provided that 

p = { [k2  - ( 1  - lLP)j&Ja2]i - kM}/ (  1 - M z )  ( 2 . 8 )  

for ka > jA,m. Here j;,, is the mth zero of dJn(y)/dy and Jn(y)  is the Bessel function of 
order n. Here and elsewhere we have used the notation of Watson (1966) for the Bessel 
functions. The choice of p, with ka > jA,m, ensures that the wave is outgoing and for 
real k does not decay as z -+ co. 

A consequence of t'he form chosen for the primary wave is that the diffracted field 
has the same 0 dependence; we write 

U(r, 0, z )  = $(r ,  z )  eino, q(r ,  0)  = h(z) ein@. (2.9) 
To assist the analysis we assume that k has a negative imaginary part. This assump- 

tion corresponds to an absorption of sound so we may anticipate that any waves 
produced will decay at  infinity. In  particular we define k = k,- iki = Ikl exp ( - i 6 ) ,  
where 0 < S < n-. At the end of the analysis we shall put 6 = 0. 

Define the transform P(r ,  s) ,  in terms of its half-range components, by 

P(r, 8) = P+(., 8) + p-c., 4, 

and s is complex. Then from (2.1) and (2.2) the equations to be satisfied by /3 are 

(2.11) 

where Af = s2 - ( ik  + M s ) ~  and A: = s 2  - C2(ik + aMs),. We define A, to be that branch 
which reduces to k when s = 0. Similarly A, is defined to be Clc at s = 0. The branch 
cuts for A, are taken on the line arg s = in- - 6 from ik / (  1 - M) to ico exp ( -is) and 
from - icoexp (-is) to - i k / ( l +  M). Those for A, are taken from i C k / ( l  -Mac) t o  
ico exp ( - is) and from - ico exp ( - iS) to - iCk/(  1 + Mac) .  

From now on we shall assume that the jet is subsonic, i.e. M < 1.  'Ihen it is easily 
shown that A, and A, have negative imaginary parts in the respective strips 

- ki ki - Cki Cki 
< R e s <  ~ < R e s < -  ___ 

1 + M  1-M'  l + M a C  1 - Mac' 

Let the strip common to both of these intervals be denoted by 

- u , k ,  < Res < uzki .  (2.12) 

We assume that @(r ,  z )  is sufficiently well behaved for P(r,  s) to exist in the strip (2.12); 
p+ exists for Re s > - u, ki and p- exists for Re s < u, ki. Specifically, since 

I m p  < - kJ(1 + M )  
one deduces that the transform P, of the primary wave exists in the strip (2.12). 

The solutions to (2.11) are Bessel functions of order n. We require the solution which 
remains finite at  r = 0, complies with the radiation condition and, when s lies in (2.12), 

(2.13) 



614 R. M .  Munt 

For convenience we introduce two further transformations 

G(sj = j:w [ y  (ik + Ma:) $(a+, z )  - (ik+ M i )  $(a-7 741 exp ( -sz) dz (2.14) 

F+(s) = h(x) exp ( - sz) dx. (2.15) and 

Then on applying these to the boundary conditions (2.3)-(2.5) together with equations 
(2.6), (2.7), (2.9) and (2.13) we obtain 

GJs) = y(ik+Mas)B(s)H(,2)(h,~)-(ik+Ms)A(s)J,(h,~)-G+(s), (2.16) 

/ow 

ei F+(s) (ik + Jls) 
A1 JN,  a )  

cj F+(s) (ik + Mas) 
A, H;‘”(A2 a )  , B(s) = where A(s)  = 

and 
i(k-puM) 

G+(s) = Zn(s + ip)’ 

Here we have used the notation JA(z) = dJ,(x)/dx and H:,S(x) = dHg)(x) /dx.  Elimi- 
nating A(s) ,  B(s) and G+(s) from (2.16) then leads to 

where 
h,J,(A,a) - y( ik+ Mas)2A,H(,2)(A2a) 
k3J; (A, a )  k3H;,(2)(h2 a )  x ( s )  = (ilc + Ms)2 

(2.17) 

We shall solve (2.17) using the Wiener-Hopf technique described, for instance, in 
Noble’s book (1958, chap. 2). To make progress we require some estimate of the be- 
haviour of the functions Y+(s) and G-(s). First, on the vortex layer and near to the edge 
of the cylinder we shall apply the full Kutta condition h(z) = O ( d )  as z-+O+, which 
implies that F+(s) = O(s-5) as Is( 3 0 0  in the positive half-plane. A second requirement 
is that the sound pressure should be bounded on the cylinder. So to account for this we 
assume that G-(s) = O(s4) as ( $ 1  +co in the negative half-plane; where q < - 1. Lastly 
we observe that in a linear model, such as this, the vortex layer has an inherent in- 
stability which grows as it propagates downstream. Associated with this instability is 
the zero so of ~ ( s ) ,  which for positive real k lies in the region Re so > 0, Im so < 0. The 
reasons for making the dependence on so explicit will become apparent when we deal 
with causality. 

I n  the usual manner we introduce split functions x+(s) and x-(s) ,  regular in the 
respective half-planes Re s > s, and Res < s2, such that x(s )  = x+(s)/x-(s). Here, for 
analytical convenience, S, and s2 are real numbers which define a narrow strip within 
(2.12) such that - a ,k i  c s, < 0 c s2 < a 2 k i .  The properties and evaluation of the 
split functions are discussed in § 4 for 6-+ 0. It can be deduced that x-(s) has a simple 
pole at so when k $ A, and 0 < S < in, where A. is defined in 9 3. Then the properties 

x+(s) = O(s%), x-(s) = O(s-$) (2.18) 

prevail as Is1 -+ 00 in appropriate half-planes. However if k E A, then so lies in the region 
Res < s, and therefore becomes a zero of x+(s). Then 

x+(s) = O(&, x-(s) = O(s-4) (2.19) 
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as Is1 -+03 in the relevant half-planes. This situation occurs when a = C = y = 1 ,  for 
which the region A. occupies the whole of the lower half k plane. This case is discussed 
elsewhere (see for instance Munt 1975), so for the remainder of this section we shall 
restrict considerations to OL < 1 .  

When k e A o  we can rearrange (2.17) to form an equation with one side regular in 
Res < s2 and the other side regular in Res > sl. Thus 

where 

In their common strip, s1 < Res < s,, the two sides of (2.20) are equal and therefore 
may be considered as analytic continuations of each other. By a straightforward 
application of Liouville's theorem, with the estimates discussed earlier, one deduces 
that the integral function defined by (2.20) is identically zero. Hence 

A$(s) = {a( 1 .M) 5 ik}&, @(s) = {s( 1 5 M a c )  5 ikC}&. 

(2.21) 
- i ( k - p M ) X - (  - i p ) A y (  -ip)A<( -ip)u)h,f(~)A,f(~) 

F+(s) = 2ncj k3x+(s) (s + ip) 
We may now formally recover the diffracted field U ( r ,  0, z )  by inverting the transform. 
Of particular interest is the external field in r > a, for which $(r,  z )  is given by 

where s1 < d < s, and kEAo. When k$Ao and 0 < 6 < there is a singularity in 
F+(s) at so and this implies that the boundary condition (2.3) is not satisfied. However 
this will be rectified when we deal with the causal solution in yj 5 .  

3. The zeros of x 
This section is devoted to  locating the zeros of ~ ( s ) .  The qualitative details of the 

location of these zeros for the case a = 0 and C = y = 1 can be found in a paper by 
Morgan (1975). Here we shall be concerned with the extension of these results to general 
values of a, y and C and where this is not possible we shall present numerical details. 

For convenience we make the transformation s = - iku and replace A, and A, by kv 
and kw, respectively, so that 

and 

Then 

I V y u )  = (1  - Mu)2 - u2 
W"U) = CZ( 1 - M a u ) ,  - u2. 

We have chosen the branch cuts for v to be on the real u axis from I/( 1 + M )  to co and 
from - I/( 1 - M )  to - 00. Those of w are taken from C/( 1 + M a c )  to co and from 
- C/( 1 - M a c )  to - co. At u = 0 the function v is unity and w is C. Since it is easier to 
deal with the case when the inequalities (a)  -C/(1 -Mac)  < - 1/(1 -&I) and ( b )  
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I/( 1 + M )  < C/( 1 + M a c )  hold simultaneously we shall, for most of the discussion, 
assume that this case prevails; since 0 < M < 1 and 0 < a < I ,  this impIies that  
C > 1/[1- M (  1 -a)]  > 1. Where appropriate we shall indicate the differences that 
occur when (a)  or ( b )  does not hold. These alternatives will be referred to as follows. 

CaseI: - l / ( l -M)  < - C / ( l - M a c ) .  

Case 11: C/( 1 + M a c )  < I / (  1 + M ) .  

The former case (I) can occur with ( b )  or its converse case I1 but case I1 can exist only 
with case I .  The combination of case I with ( b )  is the one that occurs when the acoustic 
speeds of the two media are the same; i.e. for a cold jet with C = 1. 

We shall first discuss the approximation to the zeros of ( 3 . 2 )  for positive real k in the 
limits of very high and very low frequencies. Later in this section we shall describe 
some numerical details for real and complex k. 

I n  the high frequency limit, when ka  > 1, we can expand the Bessel functions 
asymptotically, provided that u is not within a distance of ( k ~ ) - ~  from the branch 
points. Then 

x( - iku) N iy(  1 - M ~ u ) ~ w  + (1 - M u ) ~ w  cot (kaw - -&r - in). 

yw( 1 - Mau)2 + (1 - Mu)2w = 0 

y ~ (  1 - M ~ u ) ~  - (1 - M u ) ~ w  = 0. 

(3.3) 

(3.4) 

(3.5) 

Where I m  w < 0 the zeros of (3.3) are of the order of exp ( 2 k a I m  w) from those of 

and in the region Im w > 0 the zeros are of the order of exp [ - 2ka Im w] from those of 

If we further assume that y = C2, i.e. pc2 is a constant across the vortex layer, then 
we may write (3.4) and (3.5) as 

(w+w)(ww+u2) = 0 (3.6) 

and (w-w)(ww-u~) = 0 (3.71 

respectively. There are two zeros of w - w = 0, namely 

1 - c  1+c . u -  u -  
- M ( l  -aC)' - M(l +aC) ' 

w + w = 0 has no zeros. To determine the remaining zeros explicitly it is necessary to 
consider the case C = 1 ; i.e. case I occurs. Then the zeros of ww + u2 = 0 are 

1 uo, = B {5"( 1 + a)2 + q 2 (  1 - a)2 

25 '$( 1 +a) 5 iq(1 -a) 

and the zeros of ww - u2 = 0 are 

where the plus signs go with u,, and u2, 

and 

5 = {l+[M2(i-a)2+ 1]4)/M(l-a), 

q = (2'$/M(l -a) - l)*, 

E' = { - 1 + [M2( 1 - a)2 + 1]4}/M( 1 - a) 

7' = {2g/M( 1 - 01) + 1}4. 

(3.9) 
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Let us now consider which of the zeros ui are close to actual zeros of (3.2). The zero uo 
lies in the region I m  w < 0 but u1 violates this condition and so, of these two, only u0 can 
be close to a zero of (3.2).  For u2 and us it is easily shown that, as they lie on the real line 
between the branch cuts, the condition on I m  visviolated. Henceneither canbeazeroof 
x. The remaining two zeros, u4 and us, need closer investigation. First consider us. This 
lies on the branch cut to the right of the branch points I/( 1 + M )  and C/( 1 + Mac) .  To 
decide on which side of the cut the zero lies a better approximation to u5 can be derived 
by first noting that (3.2) can be rearranged in the case y = C2 to give 

M (  1 - aC) x( - iku) = - 

Since t,he zero has t o  Iie in the region Im v > 0 we have 

v(u5) = w(u5) = i[( 1 + C)2- M2C2( 1 - a)2]3/( 1 + aC) M .  

Then from the high frequency approximation t,o (3.10) we can derive 

[ (1+C)2-M2C2(1-a)]  . 
j1 

exp( -2ka 
5 -  M ( l + a C ) +  (l+aC)2M M (  1 + aC) 

l + C  ( - l ) % C ( l - - a )  
u -  

For n odd t'he zero lies below the branch cut on the physical Riemann sheet. Iiowever 
when n is even it lies on the other Riemann sheet and above the branch cut. So only for 
n odd is this zero relevant. 

Now consider the position of u4. It lies on the real line but whether or not it is 
positioned on a branch cut is dependent upon the values of the parameters. We find 
that 

(i) if [i + M (  1 - a ) ] 4  < C < [ l -  M (  1 - a)]--l then u4 lies between the branch points, 
(ii) if C < [ 1 +  M (  1 - a)]-l or C > 01-l then u4 lies on the branch cut to the right of 

l/(l+ 31) and C/(l + MaC),  and 
(iii) if [l  - M(1 -a)]-l < C < a-l then up lies on the branch cut to the left of 

- I/(  1 - M )  and - C/( 1 -Mac) .  
For case (i) the condition Imv > 0 is violated and so a zero is not obtained. Cases (ii) 

and (iii) may be treated in a similar way to u5. In these cases a better approximation 
to u4 is 

- 2ka (1  - Cz) - C2M2( 1 - az) 4 I 1. 1 -c ( -  l ) % C ( l  -a )  
esp - ( M 1 ( 1 - a C ) 2  

u -  
4 -  n l ( l -aC) -  M(l-aC)2 

Therefore t,he zero lies on the physical Riemann sheet in case (ii) only for n even, when 
it is below the branch cut, and in case (iii) only for n odd, when it lies above the branch 
cut, 

All the zeros just discussed lie in the region IIm (kav)l B 1.  The remaining region 
consists of a narrow strip about the line Re u. = - M / (  1 - W2) and a strip about the 
real axis including the branch points - I / (  1 - M )  and I/( 1 + H). There are an infinite 
number of zeros and poles of x in this region. The poles correspond to zeros of Jh(kav) .  
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A finite number of these lie on the real line between the branch points - I/( 1 - M )  and 
1/(1+ M ) .  The remainder are located on the line Reu = - M/(l - M2). 

There are no zeros of x anywhere on the real line except when case I and/or case I1 
occurs. In  case I, since x is imaginary on the bott,om of the branch between - 1/( 1 - M )  
and - C/( 1 - M a c ) ,  there may be zeros of x here and these will in general be inter- 
laced between those of JA(kav). A similar result holds in case I1 for zeros on the real 
line above the branch cut between C/( 1 +Mac) and I/ (  1 + M). 

In the narrow strip about Re u = - M / (  1 - M 2 )  and where lMu] ,  lkavl and 1 kuw) are 
much larger than unity the zeros of x are close to solutions of 

cot(kav-&nn-&) = -iyva2/w. (3.11) 

For sufficiently large IMuI, in the strip, Re (w/w) > 0. Also Im {cot (kav - inn  - an)} 
has the opposite sign to Im w. Therefore one deduces that, for / M u /  $- 1, any zeros of 
x close to Re u = - M / (  1 - M 2 )  lie to the left of this line above the real axis, whilst 
those below lie to the right. These zeros will be near to the intersection of the curve 
Rex = 0 with Reu = - M/(1- &I2), which occurs between the consecutive zeros of 
JA(kav). 

We complete the qualitative discussion of the position of zeros for real k by briefly 
observing their positions for lkal < 1. In  the region )ukal < 1 the zeros of (3.2) are 
close to 

For IMukal $- 1 the zeros essentially satisfy (3.11) and, as discussed in the previous 
paragraph, are confined to a strip about Re u = - M/( 1 - M2).  

On figures 1 (a)-(d) we have numerically located the zeros of L(u, k ) ,  where 

L(u, k )  = X( - iku)/vw, (3.12) 

for real k ,  n = 0 and different values of a and C. The zeros of x are of course the same as 
those of L(u, k). Figures 1 (a)-(c) illustrate the typical positioning of the zeros in case I 
and figure 1 (d )  the positioning for 

- C / ( l - M a C )  < -1/(1-M) < 1/(1+M) < C/(l+MaC). 

On all these figures we have superimposed the curves Re L = 0 and Im L = 0. A pic- 
ture emerges of the way the zeros and poles are linked, the curves being discontinuous 
at  the poles of L. In general there is only one zero in the region Re u, Im u > 0. This is 
clearly seen in these figures and is close to uo for I kal $- 1.  As predicted from (3.8) this 
zero moves towards the real axis as a approaches unity as can be verified by comparing 
figures 1 (a )  and ( b ) .  However there is not always only one zero in Re u, Im u > 0. One 
or more of the system of zeros near the line Re u = - M / (  1 - M2) may encroach into 
this region for sufficiently small M and I Mkaul . Crow & Champagne (1971) and Lee & 
Jones (1973) have discovered these additional zeros and one case is shown in figure 2. 

Of particular relevance to the question of causality, discussed in § 5, is the location of 
the zeros of x for complex k and 0 < 6 < n. When k is negative imaginary, i.e. S = in, 
all the poles of L(u, k) lie on the real axis in the u plane. Therefore the number of zeros 
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FIGURE 1 .  Behaviour of L(u, k) in the complex u plane. 0 ,  zeros of L; *, poles of' L. n = 0, 
M = 0.5, ka = 4.0, y = 1.0. (a)  a = 0, C = 1.0. (b )  a = 0.9, C = 1.0. (c) a = 0, C = 0.2. 
( d )  a = 0, C = 3.0. R and I indicate where Re L = 0 and Im L = 0 respectively. 

of L(u, k) in the upper half u plane is related to the change in arg Lon the closed contour 
consisting of a semicircle at infinity and the contour just above the real axis passing 
over all branch points, poles and zeros occurring on the real axis. On the semicircle 

(3.13) 
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Complex u plane 

. $ b  

I I -  T 

- 10 -5  0 5 10 

FIGURE 2. Possibility of more than one zero of L(u, k) in the region Re u, Im u > 0. n = 0, 
M = 0.2, 01 = 0, ka = 0.3, y = C = 1.0. 

a straightforward analysis reveals that on the arc given by 0 < s1 < 13 < n - el, where 
s1 + 0 and Re1[ kla( 1 - M2)& B 1,  arg L increases by n - 2s1 as I3 increases from el to 
n - el. On the remaining portion of the contour the analysis is a little more complicated. 
Let C denote the point u = - I / (  1 + M )  +is,, D denote the point u = I/( 1 + M )  + ist and 
A ,  B ,  E and F denote the points on the semicircle (3.13) corresponding to 0 = n-s l ,  
n, 0 and st, respectively. If we assume arg L = 3. at u = 0 then by careful inspection of 
arg L we can show that 

( 1 )  - in < arg L < +n 

( 2 )  in < argL < $n 

on the contour ABC, 

on the contour DEF. 

In  particular arg L = 0 at A and arg L = n at F .  Hence arg L increases by n around the 
contour ABCDEF. Therefore, since the total change in arg L is 2n on the closed contour 
there can be one and only one zero a0(k ) ,  say, of L in the upper half-plane when 6 = in. 
Further, its position will tend to uo as I kal --f tx). Using the property 

L*(u, k )  = -L(u*, - k*), (3.14) 
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FIGURE 3. Complex u plane. Position of the zeros of L(u, k )  (solid circles) and the contour C, 
m arg k = - S varies. n = 0, M = 0.5, a = 0, lkal = 4.0, y = C = 1.0. (a) S = 0, ( b )  6 = in, 
( c )  6 = fn, (d )  S = tn, (e) S = in. 

where an asterisk indicates the complex conjugate, one deduces that there is only one 
zero in the lower half-plane. This is at a$(k) .  Of course the zeros fi0 and a,* are also zeros 

Rather than pursue a further qualitative, and necessarily lengthy, discussion we 
shall revert to a numerical description of the locaticn of the zeros for other values of 6. 
The typical behaviour of the zeros for 0 < S < 4.. is shown in figure 3. One can extend 
this illustration to in- < 6 < 7~ by a simple application of (3.14); i.e. the zeros for 
6 = 8 are the complex conjugates of those for 6 = .. - 8. 

Let C, be the contour I m  (ku)  = 0, -co < IuI < co; then an important question, 
related to causality, is when does a zero of x lie on Cl? The typical situationisillustrated 
by referring to figure 3. By tracing the zeros in the u plane for 0 < 6 < &r we see that 
only ao(k)  can ever lie on C,. Similarly its conjugate f i$(k)  is the only zero that can lie on 
this line for 4n- < 6 < n-. Particular note should be made of the trace of the system of 
zeros that were near - M / (  1 - M 2 )  for S = 0. In  all cases considered these never cross 
C,. The same result is true of the additional zero shown in figure 2. A plot of the depend- 
ence of a , ( k )  on 6 for 0 < 6 < +.. is given in figure 4 for a range of values of a for fixed 

ofx(ut k ) .  
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FIGURE 

3 c 
a = 0.9 I 

t I I I r 
0 20 40 60 80 

8 (deg) 
Dependence of position of instability pole do(k) on arg k = - 6 for Q = 0, 0.5 and 

0.9, n = 0, M = 0.6, lkal = 0.6, G = y = 1.0. 

lkuI = 0.6. It appears, from a detailed numerical search throughout a wide range of 
parameters, that the zero &,(k) is crossed only once by C, and that this is for 6 in 
0 < 6 < &T. We shall therefore assume that this is always the case. 

Finally define C, as the contour in the lower half k plane for which a zero of x is 
situated on C,. This contour C, is shown in figure 5 for different values of a and C. Also 
illustrated is the region A,, which includes the whole of the negative imaginary axis and 
is bounded by C,. These will be referred to again in 0 5. 

4. The split functions 
The split functions x+(s)  and x-(s) were formally introduced in 3 2 to  enable the 

Wiener-Hopf equation to  be solved. In  this section we shall derive explicit expressions 
for these functions suitable for numerical calculations. The derivation is not subject to 
any approximations. 

In  general when k has a small negative imaginary part there are no zeros of x(s)  in 
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axis 

FIGURE 5 .  The region A. and the contour Co in the lower half of the complex k plane for n = 0 
and 1, M = 0.5, y = 1 and (a) a = 0, C = 1.0, (b )  a = 0.5, C = 1.0, (c) u = 0.9, C = 1.0, 
( d )  a: = 0, C = 3.0. 

the strip s, < Res < s,, and argx( -im) = argg(ico). Therefore on integrating 
lnx(s)l(s - x) around a rectangular contour with vertices b, & ico and b, & ico such that 
s1 < bl < Rex < b, < s,, the result is 

where 

In x ( x )  = In x+(x) - In x-(x), 

and 

Sound imteracting with a j e t  
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Here ‘P’ means that we evaluate the integral as both ends of the contour tend to 
infinity simultaneously. However, as mentioned in the preceding section, when 6 
varies and a < 1 there will be a value of 6 such that the zero so = -ikuo lies on the 
imaginary axis of the s plane and therefore in the strip s1 < Res < s2. In  particular, 
for the high frequency limit with C = y = 1 this value of 6 is given by 

tan 6 = r( 1 -a)/[(  1 +a). 

The necessary modifications to (4.1) that are needed to account for a zero in the strip 
are described by Noble (1958, p. 41). 

Let us restrict considerations to a < 1 and small 8. Then (4.1) is still valid and so 

x(s)  = x+(s)/x-(s), (4.2) 

where x+(s) is regular and non-zero for Res > s1 and x- is regular and non-zero for 
Res < s2. One can easily deduce the properties 

x+(s) = O(S*), x-(s) = O(s-3) (4.3) 

as Is1 -+a in appropriate half-planes. 
Now put ki = 0 and make the transformation s = - iku. Then for real y 

and 

lnX+(-iky) = du + 8 lnX( - iky) 

1 lnx(-iku) 
In x-( - iky) = -. P du - + In x( - iky ), 

2nz S-m u-y 

(4.4) 

(4.5) 

where P now indicates the Cauchy principal value of the integral. The contour of 
integration - C, in each case passes along the bottom edge of the branch cuts from - 00 

and along the top edge of the branch cuts from + co. The contour is showninfigure 3 (a).  
Our main interest is in the magnitude of diffracted sound for each mode of propaga- 

tion. Therefore we shall restrict consideration to the calculation of the quantities 
Ix+I and 12-1. In  particular Ix+I is given by 

where 
I+MaC “ 1  ’ 

1 
[ , -My 

d ,  =max - 
1-MaC “ 1  ’ 

It is convenient at  this stage to write 

x( - iku) = E(u)/K(u), 

where E(u) = y( 1 - Ma~)~vHF)(kaw) JA(kav) - (1 - M~)~wJ,(kuv) H;@)(kaw) 

and K(u) = JA(kav) H p ( k a w ) .  

The splitting of Ix( - iku)) could be achieved directly without reference to E and K.  
However it proves less confusing to deal with E and K instead of x. Equations similar 
to (4.4) and (4.5) also hold for splittings of E and K ,  so that 

x+( -ikY) = E+(Y)/K+(Y), x-( - ikY) = ~ - ( Y ) / a Y ) .  
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Consider first the function IK+l. If there are 1 zeros of J;(knv) in the range 0 t o  
ka/( 1 - M2)$ then it is not too difficult to show that 

(4.7) 

where 

and a, = [ [ l - ( l - M 2 )  ( 5 2 ) 2 ] 4  - - M  )/ (1-MZ) .  

Here we have taken arg HL(2)(ka8(z))  as - +7r at  z = C/( 1 - M2a2C2).  
The function E+(y) needs more care since arg E ( y )  is discontinuous at  the branch 

points. As the contour - C, passes under - I/(  1 - M )  the function arg E(u)  increases 
by inn whilst a t  - C/( 1 - Mac) it decreases 'by inn. Similarly arg E(u)  increases by 
inn as - C, passes over C/( 1 + M a c )  and decreases by grin over I / (  1 + M ) .  To assist 
wit,h the numerical work let us define a new function arg B(u) that  has the same value 
close to and on eit,her side of the branch points by 

arg&(u) = 

C 
1 + M a c  

-H (u- 

where H(z )  is bhe unit Heaviside function. Then 

where 

10 otherwise, 

(4.10) 

[ O  otherwise. 
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Here yi and yi are the zeros of x( - iku) that appear on the branch cuts if case I or case 
I1 occurs, respectively. 

These zeros have been arranged such that 

1 
< y1 < ... < ym* < - C C 

< Y m l < - l - M a C ’  l + M a C  1+M’ < y1 < y2 < ... 1 
1-M 

-- 

The function arg B(u) is a constant between consecutive zeros. In general arg 8 
increases by n on the contour as u passes under yi and decreases by n as u passes over 
fi. Then 

$j = ~n+(j--1)mrargB(y) for yiyi-l < u < yi 

and $j = in + (m2 - j  + 1)  n - arg B(y) for yjM1 < u < fj, 

However, as a necessary precaution, one should include in the calculation of $j the 
possibility that the contour actually passes over and not under yi. This occurs if 

then arg &(u) will decrease by T on the contour as u passes over yi. The required modifi- 
cations are easily built into the calculation of arg B(u) and +i. 

5. Causality 
In this section the causality of the sound field is investigated. Jones & Morgan (1972) 

approached this problem by analysing the initial-value problem in the space of ultra- 
distributions (Jones 1973) and requesting that the sound field should not exist before 
the source is triggered. Their analysis showed that, to make the solution to the har- 
monic problem causal, one needed to add a homogeneous solution to it and this gave 
rise to instability waves. This approach to causality can be analysed explicitly for 
problems involving plane vortex sheets but, unfortunately, is difficult to implement 
when cylindrical vortex layers are involved. 

There is, however, a theorem on causality, derived by Jones & Morgan (1974), that 
can be applied directly to the harmonic problem. 

THEOREM. Let $(k) be a solution to a harmonic problem with time dependence 
exp (ikcj t ) .  Then $(k) is causal if and only if it  is a regular function of k in Im k < 0 and 
there exist real constants b and d > 0 such that 

exp[(b+id)k]$(k) = O(lkl”) (5.1) 

as I kl -+ co in Im k < tz < 0 for some finite p ,  
This theorem has been successfully applied by Morgan (1974, 1975) and we shall 

use it in a similar manner. First it is shown that (2.22) is the only causal solution for 
6 = +n and 1 kI sufficiently large. Then q+ is made into a regular function in the complete 
lower half k plane. Finally we verify that the causal solution we have constructed 
satisfies the necessary boundary conditions when 6 = 0. 

For 6 = in the two zeros .il,(k) and B,*(k) of x lie in the region 

Reu > Im(u)cot6+ld(, 
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for some small 2 =!= 0; see figure 3 ( e ) .  Denote the corresponding zeros in the s plane by 
so@) and s,*(k) and define 2; (s )  by 

x(s)  = (s - so) (8 - 83) (5.2) 
where s3 = so* when 6 = in. 

In the high frequency case, I kal B I ,  with S = in it  is a simple matter to verify that 
there is no change in arg F ( s )  on the imaginary axis between s = & ico. For other values 
of I k] it has not been possible to prove analytically that arg P(s)  has the same value at  
these ends of the contour on the imaginary axis. However a numerical search suggests 
that there is no change in arg $(s)  and so thiswill be assumed throughout the remaining 
analysis. Therefore the splitting (4.1) can be applied to $(s) to give 

a s )  = t;+(s,/iil-(~,. 

Then 

Also fi+(s) = O(s3) and ,2-(s) = O(s-3) as Is1 +co in the appropriate half-planes. 

in 3 2, with the bounds appropriate to S = Qn we obtain 

x+P) = (8 - 8 0 )  (8 - s,)F+(s), x-(s )  = 2;-@,. 

Substituting x ( s )  from (5.2) into (2.17) and applying the Wiener-Hopf technique, as 

(5.3) 
- i ( k  - p a )  ,L( - i p )  A,( - i p )  A,( - ip)  Al+(s) A$(s) 

2ncj k3(s + ip) (s - so) (s - s3) P+(s) F+(s) = 

This isidentical to the value given by (2.21). The field in T > a equivalent to (2.22) is 

e+ioo c,(ik + Mas) F+(s) H f ) ( A , r )  
exp (sz) ds, 

A, H.;‘”‘(A, a )  W , Z )  = - 2ni ‘s e- im 
(5.4) 

where s1 < e < s2 and S =  Qn. 

Taking the limit of high frequency, llcl 9 1,  with S = in and s = -iku equation 
(5.4)becomes 

+(r ,  z )  
f m  K ,  [I - u( 1 + M)] t [C  - u( 1 + MaC)]3( 1 - Mau)  a3 

27r (u-p/k)(u-u0)(u-u~),2+(-iku)wri) 

x exp[-ikw(r-a)-ikuzldu, ( 5 . 5 )  

K ,  = - 271.k2 1 (1 -f M )  ,2-( - ip) [ 1 +; ( I  - [c+; (1 - M a c )  where 

Now with S = Qn and sufficiently large I Icl , 

x( -iku) - iA(u), 

where A(u) = y( 1 - Mau)%+ (1 - M u ) ~ w .  When y = C = 1 and a = 0 this is the 
function A that arises for the plane vortex sheet problem of Jones & Morgan (1972). 
The splitting of this is given by Morgan (1974) and is essentially the splitting of x when 
lkl +a. One observes that the integrand in (5 .5)  is similar to that encountered in the 
semi-infinite vortex sheet problem discussed by Morgan (1975). It is known in that 
problem that the solution is causal for 6 = in. Therefore when I kl is sufficiently large 
the solution (5 .5 )  is also causal for 6 = in. 

That this is a unique solution can be easily verified. Any other solution must differ 
from (5 .5)  by a linear combination of the residues at  the poles of the integrand. Since 
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all the poles lie in the region Re u > 0 it follows that, when z is sufficiently large and 
negative, din the theorem must be negative. So such a solution cannot be causal. 

It can be verified that the integral (5.4) converges uniformly with respect to k when 
k lies within the region A, defined in 5 3 and shown in figure 5. Therefore @ is a regular 
function of k in A, and is the analytic continuation of the solution for 1 k [  sufficiently 
large and 6 = 4.1. Hence, from the theorem, $ is causal throughout the region A,. 

Now across C, and for 0 < 6 < in the pole s,(k) of the integrand is encountered. 
Similarly s3 = so* is encountered on C, for &r < 6 < n. In  either case @is discontinuous 
across C,. Thus to meet the regularity requirement of the theorem we define a new 
function @ by removing the singularity in @: viz. 

as 
e + i m  c j ( ik  +Mas) I?+($) H$)(A,r) exp (sz)  

A, f lA(2) (A2 a )  Id/c(r,z) = - 2ni e-ia 

exp($,z), r > a,  

( 5 . 6 )  
1 C j ( i k  4- Mas) F+(s) (s - go) HE)(A, T )  

A, H p ( A ,  a )  

' S  
+&(A,) lim [ 

s -+g,(k) 

where 
+ if kcC, ,  

1 otherwise. 

if 0 < 6 < in, 

The solution @ is now causal for all k in the lower half k plane. 

lar, when Re k > 0 and 6-+ 0 
By a similar process one can derive the solution which is causal for r < a. I n  particu- 

There is no difficulty in establishing that @(r , z ) ,  as given by (5.7), satisfies the 
boundary conditions (2.4) and ( 2 . 5 ) .  To verify that (2.3) is satisfied first observe that 
the non-exponential parts in the integrands that arise in a@(a, z ) p ,  derived from 
(5.7), are O(ls1-9) as Is1 +CO in Res > sl. Then the required result is confirmed by 
closing the contours in the right half-plane for z < 0;  viz. 

a@(a,z)/ar = 0 for z < 0. 

Consider now the Kutta condition at the edge of the cylinder. Let P ( z )  denote the 
rausal displacement of the vortex layer. Then for 6+ 0 

h'(z) = - F, ( s )  exp (sz) ds + (s - so) F, (so) exp (s,z). (5.8) 
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Here F+(s) is O( 1~1-4 )  as Is1 +co and so the integral for hC(z) is a uniformly convergent 
function of 2. hc(z) is therefore a continuous function for all z. Since the contour can be 
closed in the right half-plane to give hc(z )  = 0 for z < 0, this implies that  h(z)-+O as 
z -+ O+. The same is true of dhc(z)/dz but d2hc(z)/dz2 is discontinuous a t  z = 0. Hence the 
Kutta condition that the vortex layer leaves the plate with zero gradient. is satisfied; in 
particular hc(z)  = O(z8) as z-+ o+. 

Thus the solution (5.7) satisfies all the boundary conditions. Also, it is causal and 
gives the correct Kutta condition. 

6.  The far field 
The acoustic field of most interest is that experienced a t  large distances from the 

origin. This field can be determined asymptotically using the method of stationary 
phase. 

The relevant causal solution is obtained when k is real and positive, i.e. 6 = 0. For 
6-t 0 re-express F+(s) in terms of x+(s)  and x-(s)  by substituting ,G+(s) = x+(s)/(s - s3) 
and ,G-(s) = (s-s,)x-(s) into (5.3). Also, for convenience substitute s = -iku into 
(5.7). The causal field in r > a is then given by 

-00exp('8)K3[1 - M a ~ ] [ l  - ~ ( 1  +M)]+[C-u(l +MaC)]d 
@(r ,z )  = lim -. 

6-0 2rz 00 oxp(i8) (U - u O )  (U -p/k) x+( - i k ~ ) ~ H ; ( ~ ) ( k a w )  

xHc)(kwr)exp( - ikuz)du+G(k ,r , z ) ,  (6.1) 

' S  
where the instability wave is 

G ( k ,  r ,  2) = 

w, is the value of w a t  u,(k) and 

K3( 1 - Nau,) [ 1 - uo( 1 + M)]s [C - uo( 1 + MaC)]3H;(2)(krw,) exp ( - iku, z )  
(u, -p/k) x+ ( - iku,) w, HA(2)(kaw,) 

(6.2) 

9 

The contour of integration in (6.1) is the line Im(ku) = 0, i.e. C,. When S = 0 this 
contour C, collapses onto the real axis with small modifications to account for the 
branch points and poles. As shown in figure 3 (a )  it passes below the branch cuts from 
- co and above the branch cuts from + 00. I n  general it can be taken to cross the real 
axis at u = - M / (  1 - M 2 ) ,  passing below any poles near the real axis for which 

Reu < -M/(l - M 2 ) .  

For possible exceptions to this rule the reader is referred to a paper by Morgan (1975). 

r = p( 1 - M2a2C2)4 sin 8, z = p( 1 - M2a2C2) cos 8, Let 

where p > 0 and 0 < 8 < n. Now deform the contour C, into the curve 

which for large distances from the origin becomes the stationary-phase contour. Here 
r is real with - co < 7 < co. The curve (6.3) is a branch of the hyperbola with asymp- 
totes u = e*fn corresponding to 7 = co, respectively. 
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The hyperbola avoids the branches provided that 

c cos e - M ~ C ~  
- cr2 < 1 - MZa2C2 < g19 (6.4) 

where g1 and cr2 are defined by (2.12). When (6.4) is not satisfied the vertex of the 
hyperbola, given by 7 = 0, lies on the branch cut of v. This occurs if either 

(a )  cr, = l/(l + M )  and 0 is small enough 

or ( b )  g2 = 1/( 1 - M )  and 8 is large enough. 

In  either case it is necessary to join the two points of the hyperbola corresponding 
to r = 0 f by a loop round the relevant branch point of v. 

Assume for the moment that (6.4) holds. Let 

where Po, B0 and r0 are real and such that 0 < Po < &n, 0 < 0, < in and ro > 0. Then 
for kp & 1, and when all poles except that at uo are ignored, we may write 

IX) (1 - Mau)  [1 - u(1 +M)]4 [C-u(1 +Mac)] )  
@(r,  z )  = -- 

K3 277 s - a, (U - u0) (U - p / k )  (1  - M2a2C2) x+( - iku) wHk"(kaw) 

exp { - ikC cosh r + ikpMaC2 cos 0 + inn i + an i} dr  

+ H(e0 - 8)  G(r,  z) ,  (6.5) 

where H ( x )  is the unit Heaviside function, which is zero if x < 0, & if x = 0 and 1 for 
x > 0. The integral may now be evaluated asymptotically by the method of stationary 
phase. Thus, provided that 0 is not near 0 or n, the field at large distances from the 
origin is 

P(r,z) - 
K3( 1 - Mau)  [ 1 - u( 1 + M)]* [C - u( 1 + JfaC)]: exp { - ikpC( 1 - M a c  cos 0) + innil - 

n k p ( ~  - u O )  (U - p / k )  (1  - M2a2C2) x+( - iku) wH;,@)(kaw) 

+ H V o -  8) G(r,  4 ,  (6.6) 

with u = C( cos 19 - M a c ) / (  1 - M ~ C Z ~ C ~ ) .  

In deriving (6.6) we have ignored all poles captured, with the exception of uo, as the 
contour of integration is deformed into that of stationary phase. However the residue 
at u = p / k  is zero and for the other poles, associated with zeros of x+( - iku) ,  it is easily 
deduced that the residue at  each pole captured is exponentially damped. So the terms 
in (6.6) dominate each of these residues in the far field. The question arises as to 
whether the infinite sum of the residues is significant. This point is discussed by Morgan 
(1975) and one can extend the arguments to this problem to show that the sum is still 
insignificant when compared with the terms in (6.6). 

When (6.4) is not satisfied there is an additional loop around the branch cut to 
investigate. Now x( - iku)/vw has the same value on either side of the branch cut ofv 
for points lying on the cut but between the branch points of w.  Therefore 

x t  ( - iku) [ 1 - U( 1 + M ) ] - J [ C  - U( 1 + M o ~ C ) ] - ~  
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also has the same value on the top and bottom edges of this portion of the branch cut. 
So the contribution from the loop round the branch cut is zero. The far field is therefore 
given by (6.6) for all 8 not close to 0 or 7 ~ .  

7. Numerical calculations 

and comparisons are made with experimental work. The sound pressure 
I n  this section some numerical results for the far-field radiation pattern are discussed 

P(T, 2) = - P a C a  C ( i k +  Maa/a%) p ( r ,  z ) ,  

with given by expression (6.6), has been used in these calculations but, since the 
instability wave is difficult to portray in the far field, the term H(8,- 8) G(r ,  z )  has been 
ignored. The comparisons will therefore be of relevance in the region 8 > 8,, where 
8, < 90". Flight simulation, for instance, decreases this angle 0,; e.g. 8,+0 as a+ 1. 
When 8 < 8, the instability term dominates the far field and describes a sound wave 
that grows exponentially with distance downstream. Such growth cannot continue 
indefinitely since at  some stage nonlinearities will become important. The physical 
mechanisms that are available to curtail the growth to the vortex layer have been 
discussed by Crow & Champagne (1971). Also a linear model has been proposed by 
Jones & Morgan (1974) and it may be possible to incorporate this in future work on the 
problem. 

Let r = R sin 0' and z = R cos 8'; then, omitting the (0, t )  dependence, the sound 
pressure in the far field is 

where 
CK,( 1 - Mau')2[1- u'( 1 + M)]3 [C - u'( 1 + MaC)]3 

'(") = ~HA(~)(kaw')  [I - M2a2C2 sin28']3(u' - u,) (u' - p / k )  w'x+( - iku')' 

C cos 8' [ 1 - M2a2C2 sin28']-3 - Mac2 
I - M2a2C2 

u' = 

w' = C sin 8'[ 1 - M2a2C2 sin28']-t. 

Here 

Then the radiation pattern for the normalized sound pressure level can be written as 

1 decibels 2010g10 I [k(k2-j&Ja2)3]3 

and is presented in figures 6-15 for a variety of parameter values. In  this the most 
difficult expressions to calculate are 1 x+( - iku') 1 and lx-( - ip) = 1 x+( - ip ) /x(  - ip) 1 
since I ,  and B, in (4.8) and (4. lo), respectively, need to be evaluated numerically. 

In figures 6 and 7 we have presented the effect of external flow on the radiation pat - 
tern for the (0, 0) plane wave and the (0, 1 )  mode, respectively. Here the (a, b )  mode 
corresponds tQ n = a and m = b. The results are given for a jet Mach number 2M = 0.5, 
ka = 4.0 and three values of a corresponding to  no ext,ernal flow (a = 0), a = 0.5 and 
the case when the external flow velocity equals that of the jet (a = 1.0). I n  figure 6 (a) 
we notice that when a = 0 the noise level peaks at  around 50" to the jet axis, As a 
increases, this angle, 8, say, decreases until the peak is at  0" when a = 1, The region of 
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10 0 -10 0 10 20 (dB) 

10 0 -10 0 10 20 (dB) 

FIGURE 6. Radiation pattern for (0, 0) mode with flow mismatch (a  varies), M = 0.5, ka = 4.0, 
C = y = 1.0. (a) ‘Reception time’ results. (b) ‘Emission time’ results. . * * , region of influence 
for instability wave. 

90” 
T - -  , 

0 -10 -10 0 10 (dB) 
FIGURE 7. ‘Emission time’ radiation pattern for (0, 1) mode with varying a ;  M = 0.5, ka = 4.0, 
c = y = 1.0. -- , a =  0;  , a = 0.5; --- , c1 = 1.0; . . . . ,  region of influcncc f<Jr 
instability wave. 



Sound interacting with a j e t  633 

influence of the instability wave is also indicated and depends on a in a similar way; 
i.e.8,decreases fr0m45~toO”asa increasesfromOto l.Thisinstabilitywave,whichisan 
inseparable part of the solution for 8 < 8, but is not accounted for in the results, can be 
anticipated to dominate the relatively quiet region (the ‘downstream zone of silence ’) 
that is noticeable close to the jet axis when a =# 1. Also, in the upstream direction 
(8’ 2 90°) it can be seen that the noise level increases with external flow and, for 
ka = 4.0, is most noticeable at  90’ to the jet axis. However these results pertain to 
observations in the ‘reception time’ co-ordinates (R, 8’). To study the effects of flight 
it is usual to quote the results in ‘emission time’ co-ordinates ( re ,  8,) which are related 

8, = 8’ + sin-’ [Mac sin 8’1 

re = R/{ i + MaC[MaC + 2 COB 8,])4 

to  (R, 8’) though 

and 

The effects of flight in ‘emission time’ co-ordinates are presented in figure 6 ( b ) .  In 
contrast to the ‘reception time’ results, we observe that the level at 90” is not sig- 
nificantly dependent on a and therefore on flight.t None of the other features, i.e. the 
increase in upstream level with a and the dependence of 8, and 8, on a, are quali- 
tatively altered by the co-ordinate transformation. For the ( 0 , l )  mode the effect ofthe 
external flow on the ‘emission time’ radiation pattern, presented in figure 7, shows 
similar trends to those of the (0, 0) mode. 

The result of varying the jet density and acoustic speed independently of each other 
is shown in figures 8 and 9, respectively, for a jet with no external flow (a  = 0). We 
observe in figure 8 that increasing the jet density, which corresponds to a decrease in 
y,  results in an increase in the noise level at all angles. For the variation of the acoustic 
speed, with y = 1, we have illustrated two cases. In  the first case, figure 9(a) ,  the 
sound frequency is kept constant thus ka varies with the acoustic speed. A general 
trend is difficult to extract in this case since the ‘lobe ’ structure is highly dependent on 
ka. However a trend can be extracted in the second case, in which ka is kept constant 
whilst the jet acoustic speed varies. This is shown in figure 9 (b ) .  It is then evident that 
the effect of increasing the jet acoustic speed, corresponding to an increase in C ,  is to 
beam the sound to the side. This feature has also been observed by Mani (1974) for 
a jet devoid of rigid boundaries. Also it should be noted that the angle 8,, which defines 
the region influenced by the instability wave, increases with y or C. Therefore when the 
jet is heated, which corresponds to an increase in y and C, we can expect a larger angular 
region of the radiation pattern to be influenced by the instability wave. 

A number of calculations of the radiation pattern have also been presented by 
Savkar (1975), who used the Carrier-Koiter approximation for the same problem. A 
comparison with this work is given in figures 10-12. For the asymmetric ( 4 , l )  mode 
the comparison, in figure 10, for the flow mismatch shows that there is an additional 
zero in the field for Savkar’s calculation. This can be traced to when the stationary- 
phase point experiences the branch point I/( 1 + M ) .  The differences can be shown to be 
a property of the Carrier-Koiter approximation by comparing Savkar’s L(a) and 
L*(a) at this point. In  figure 11 the check is extended to include the experimental 
results of Plumblee & Dean (1973) for the (0, 0) mode. The agreement is not particu- 
larly good for either the present work or that of Savkar. However this is probably 

t The author is indebted to a referee for indicating t,hat in ‘emission time’ co-ordinates the 
level at 90” would not be affected by flight. 
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90" 

10 0 -10 0 10 20 (dB) 
FIGURE 8. Radiation pattern for (0, 0) mode with density mismatch and no external fiow; 

y varies, a = 0, M = 0.5, ka = 4.0, C = 1.0. * - 1 ,  region of influence for instability WRVC. 

180" 0" 
io 0 -10 0 I0 20 (dB) 

90" 

10 0 0 10 20 (dB) 
FIGUFCE 9. Radiation pattern for (0, 0) mode for M = 0.5, y = 1.0 and mismatch in acoustic 
specd with no external flow (a = 0). (a)  Constant frequency, jet acoustic speed varies, Cka = 4.0. 
( t i )  Estcrnal acoustic speed varies, constant jet acoustic speed, ka = 4.0. * . . . ., region of 
iufluence for instability wave. 
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180" 
FIQURE 10. Comparison with Savkar (his figure 10) for (4, 1) mode, ka = 11.7, M = 0.14, 

90" 

c = y = 1.0. 

(dB) 
FIGURE 11. Comparison of theoretical (0, 0) radiation pattern (solid curves) with Carrier-Koiter 
approximation of Savkar (his figure 6, dashed curves) and data of Plumblee & Dean (dott,ed 
curves). Flow velocit,y = 150 ft/s, Mi = 0.134, a = 0, ka = 4.58. 
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90" 

60 80 160 (dB) 

Cylindrical duct 

FIGURE 12. Comparison of theoretical (3, 1) radiation pattern (solid curves) with Carrier- 
Koiter approximation of Savkar (his figure 9, dashed curves) and data of Plumblee & Dean 
(their figure 19, dotted curves). Flow velocity = 150 ft/s, M, = 0.134, a = 0, ka = 4.58. 

because Plumblee & Dean's experiment is for transmission of sound out of an annular 
duct, for which the modes of propagation depend on the roots of 

JA(xa/b) YL(x) - JA(x) YL(xa/b) = 0 

instead of JA(x) = 0. Specifically, the points of zero field will differ as shown in the figure. 
A further comparison is made in figure 12 for the (3, 1) mode and this shows better 
agreement with experiment. The point to make here is that the discrepancies in 
figure 12 for 6' < 40" could be an indication of the effect of instabilities although, as 
already pointed out, this could be a feature of the annular duct. 

Experiments for which the present theory should be a relevant, although admittedly 
crude, model have been carried out recently by Pinker & Bryce (1976) and a compari- 
son with their work is made in figures 13-15. In  these experiments the frequency was 
restricted to a value below the cut-off frequency so that only the plane wave ( 0 , O )  mode 
propagated. To simulate the effect of an infinite external flow (or 'flight') Pinker & 
Bryce immersed the jet in a second coaxial flow and applied the corrections of Jacques 
(1975) to the shear layer which separated this flow from still air, All the experimental 
measurements were carried out in the far-field, still-air region, within an anechoic 
chamber. Figures 13 and 14 compare the theoretical and experimental predictions for 
the radiation pattern for a cold jet. For the cases with no external flow the agreement 
between theory and experiment can be seen to be very good throughout the angular 
range considered in the experiments. Such agreement is surprising since the mathe- 
matical model does not take account of the effects of the contracting jet nozzle which is 
present in the experimental set up. Included in figure 13 is the comparison, in 'emission 
time' co-ordinates, for the far-field prediction in an external flow. Discrepancies in 
these 'flight' predictions at low angles to the jet axis may be due to the presence of the 
second shear layer in the experiments. Preliminary calculations for the problem 
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10 30 50 70 90 110 130 150 
Angle from jet axis (deg) 

FIG~RE 13. Comparison with experiment (Pinker & Bryce) for a cold jet (C = y = 1.0) a t  
2.5 kHz (ka = 0.6) for the (0, 0) mode. Static jet (a = 0) : __ , theory; 0, experiment. Jet  + 
external flow: ---, theory; + , experiment. . 3 . . , predicted region for instability wave. (Experi- 
ment matched with theory a t  90" in static conditions.) 

containing a secondary cylindrical vortex layer do indeed indicate better agreement 
with experiment at these low angles. However the details of this latter, more com- 
plicated problem will be left for another paper. 

Comparisons with Pinker & Bryce for a hot jet with no external flow are given in 
figure 15. It appears that the jet density may be a critical factor. In  particular, a 
curious fact is that the agreement with experiment improves on using y = 1 instead of 
using the value derived from the conservation of static pressure across the vortex 
layer; i.e. y is given by y 2: C2. However it should also be noted that the largest of the 
discrepancies occur in the region 8 < 8, which is anticipated to be influenced by the 
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Angle from jet axis (deg) 

FIQURE 14. Comparison with experiment (Pinker & Bryce) for a cold jet at 1.0 kHz (ka = 0.24) 
for the (0, 0) mode with a = 0. --, theory; 0, experiment; . . * , predicted region for insta- 
bility wave. (Experiment matched with theory at 90" in static conditions.) 

instability wave. This would be consistent with a large contribution from the insta- 
bility term H ( O 0 - 8 ) G ( r , z )  of (6 .6) ,  which we have not been able to include in the 
presentation of the results. 

The author wishes to express his thanks to Professor D. S. Jones and Dr J. D. 
Morgan for many helpful discussions, specifically to J. D. Morgan for his computer 
algorithm to evaluate Bessel functions of complex argument. He would also like to 
thank the Science Research Council for the financial support to carry out the work. 
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FIGURE 15. Comparison with experiment (Pinker & Bryce) for a hot static jet a t  2.6 kHz 
Ti = 830 OK and the (0 ,O)  mode. ---, -, theory; 0, experiment; * . . , predicted region for 
instability wave. (Experiment matched with theory a t  90 O in static conditions.) 
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